
M. Schillo et al. (eds.): MATES 2003, LNAI 2831, pp. 38-49, 2003.
Springer-Verlag Berlin, Heidelberg 2003

The AEP Toolkit for Agent Design and Simulation

Joscha Bach, Ronnie Vuine

Institut für Informatik, Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

bach|vuine@informatik.hu-berlin.de

Abstract: The design of artificial agents that are meant to model behavioral,
cognitive, economic or social structures asks for tools that aid in layout and
implementation of agent architectures. To implement agents based on Dörner’s
Psi theory of emotion and cognition, our group has introduced a toolkit that
assists in designing modular architectures, as well as representational structures,
such as semantic networks, control scripts and connectionist structures by
means of a graphical editor. At the same time, the framework supports the
inclusion of functionality written in a native programming language. This paper
gives an overview over the implementation of agents according to Dörner’s
theory, and while it also aims at giving an insight into the functioning of these
agents (which we call “MicroPsi” agents), its main purpose is the explanation
of the use of the toolkit.

1. Introduction

The modeling of cognition, emotion, sociality and behavior with multi-agent systems
has become an important tool to test and develop hypotheses or to represent a slice of
a given reality. Our group is especially concerned with the design of a model of
human emotion in the context of an AI agent architecture. The resulting architecture
is called MicroPsi and represents a ‘broad and shallow approach’ (as suggested for
instance by Bates, Loyall and Reilly [5]). MicroPsi is based on theoretical work by
the psychologist Dietrich Dörner [7,8,9]. Applications of MicroPsi include
experiments on learning in complex environments, modeling of emotion in interaction
with humans and simple cognitive modeling.

The concepts of MicroPsi have been described in earlier publications by the
authors ([1,2,3]). MicroPsi is based on a network formalism (“node nets”) that aids as
a general method for specifying the architectural components, individual functionality
of cognitive modules, representation of actuatoric and sensoric schemata and so on.
To support the design of such agents, we have developed a toolkit, which we current-
ly call the “AEP framework” (for Artificial Emotion Project), but which lends itself to
the design of agents with different, not necessarily emotional architectures as well.

The AEP framework [4,14] consists of several components that support the design
of individual agents (the node net editor and simulator), the multi-agent simulation
environment (the world editor and simulator), the interaction between agents and

The AEP-Toolkit for Agent Design and Simulation 2

human actors (the visualization tools) and the integration of the former parts (the AEP
server and console). This paper briefly describes the node net formalism and then sets
out to explain the implementation of several modules of MicroPsi agents. The paper
concludes with a note on distributed simulation, a short outlook and examples of
applications of the framework.

2. Node Nets

2.1. Representation with Nodes

In his work on modeling human emotional and cognitive behavior, Dörner suggests
the use of a kind of neural network for the representation of control structures,
declarative and protocol memory. [7] Dörner asks for a mechanism that can represent
both symbolic knowledge and connectionist configurations with the same data
structures. Such representations could for instance be implemented as influence or
belief networks (see, for instance [13]) with some additional logic to make them
executable and interpretable.

In MicroPsi agents, these representations are directional spreading activation
networks called node nets. These networks consist of units with inputs (“slots”),
outputs (“gates”), propagation and node functions. Units may become active, causing
them to execute their node functions. Activation is stored in the gates, which also
possess threshold and amplification values. The arcs or links between units connect
gates with slots, and activation may spread between units.

The most common node type used to represent semantic relationships is called
“concept nodes”. These have nine different gates: general activation (gen), links for
causal relations forwards (por) and backwards (ret), for part-of and contains relations
(sur, sub), for membership (cat, exp), and for naming (sym, ref). Of these, por, ret, sur
and sub are part of the original description of the Psi theory and derived from a theory
of representation by Klix [11]; the others have been added to simplify the
implementation and notation. Usually, concept nodes are symmetrically linked (i.e.
for every ret link, there is a por link in the opposite direction, and so on.)

Concept nodes may be connected to special nodes, so-called “directional
activators” which are connected to all individual gates of a certain type. Gates may
only transmit an activation, if their corresponding activator is active, which allows for
a spreading activation mechanism. A set of nodes that is connected to the same set of
directional activators is called a node space.

By choosing appropriate weights and thresholds, links between nodes can express
logical AND and OR terms. It can be demonstrated that this notation is suitable to
express first order logic [9]. On the other hand, information retrieval with node spaces
is very similar to using hierarchical Case Retrieval Networks with directional
activation [12].

The current implementation of MicroPsi comes with a graphical front-end that
allows to define, maintain and execute node nets. The resulting networks can be saved
in XML format.

3 J. Bach, R. Vuine

2.2 Definition of Node Nets

Node nets consist of sets of net entities U , which are called nodes and modules, and
which are connected to each other by linksV and to the agent environment by a vector
of DataSources and DataTargets .

{ }net, , , , fNN U V DataSources DataTargets=

where netf is a propagation function calculating the transition from one state of the
node net to the next.

(){ }act node, , , , , f , fU id type I O α=

Generally speaking, an entityu U∈ consists of a vector I of slots, a vector O of
gates, an activation α , an activation function actf : I α→ and a node function

nodef : NN NN→ (that is to say, there are no real limits to what the node function
can do to the node net). The id makes it possible to uniquely identify a net entity.

Fig 1: Node net entity.

Entities come about in different types, such as register nodes, concept nodes and so
on, which will be explained below.

Nodes may be grouped into node spaces:

{ }net, , , fS S S SS U DataSources DataTargets=

By mapping the SDataSources of a node space to slots, the SDataTargets to gates
and the local net function netfS to a node function, it is possible to embed a node space
into a single node entity, called a node space module. Thus, hierarchies of node
spaces may be created.

Often, node spaces contain a number of nodes that have special properties, such as
{ }

1
; ,...,

n

S S S
gateType gateTypeActivators U Activators u u⊂ = . Activators may influence

the way activation spreads within a node space and are explained later on.

(){ }1 2, , , ,u u
i jV o i w c st=

Note that nodes (1u and 2u) can be connected by more than one link. Links are
defined by the gate 1u

io and the slot 2u
ji , which they connect, and are annotated by a

weight []1,1w −∈ � , a certainty value []0,1c ∈ � and a vector ()4; , , ,st st x y z t∈ =�
containing spatial-temporal values.

u

id, type, …

slots
i1

i1

…

in

gates
o1

o1

…

om

 wo(u’,k),i(u,1),
 co(u’,k),i(u,1),
sto(u’,k),i(u,1)

α
fact

fnode

The AEP-Toolkit for Agent Design and Simulation 4

(){ }out, , , , , , fO gateType out amp min maxθ=

Gates provide the output of net entities and consist of an output activation out ∈ � , a
threshold θ , an amplification factor amp , upper and lower boundaries on the
activation min and max and an output activation function

outf : O Activators outα× × → that calculates the values of the gates, usually by:

()()min max , , , if

0, else
o ogateType gateTypeamp act min max act

out
α α θ ⋅ ⋅ ⋅ >=

where
ogateTypeact is the output activation out of the activator node

o

S
gateTypeu Activators∈ of the respective node space. (This calculation can be

replaced by other functions, using for instance a sigmoid, which is useful for
implementing a variety of neural network learning functions.) By triggering an
activator, the spreading of activation from gates of the particular gate type is enabled.

 Input to the nodes is provided using an array of slots:

(){ },I slotType in=

The value of each slot uji is calculated using netf , typically as the weighted sum of its
inputs. Let ()1,..., kv v be the vector of links that connect u

ji to other nodes, and
()1,..., kout out be the output activations of the respective connected gates:

1

1
u

n nj

k

v v ni
n

in w c out
k =

= ∑

2.3. Defining Specific Node Types

Concept Nodes, as mentioned before, are the typical building blocks of MicroPsi
node nets. They consist of a single slot of the type gen (for “generic”) and their node
activation is identical with their input activation: geninα = . Dörner’s representations
make use of the link types por, ret, sub and sur, which are represented by gates.
Additionally, concept nodes have the gates cat, exp (for “category”, denoting
membership, and “exemplar”, pointing to members) and sym, ref (for symbols and
referenced concepts). Finally, concept nodes contain a gate gen, which makes the
input activation available if it is above the threshold genθ – there is no gen activator.

Register nodes are the most basic node type. They consist of a single slot and gate,
both of type gen, and like in concept nodes, their output activation amounts to

[] , if , 0 else; max
gen genminout amp inα α θ α= ⋅ > = .

Sensor nodes are similar to register nodes, however, their activation genout is
computed from an external variable SdataSource DataSources∈ :

[] , if , 0 else; max
gen genminout amp in dataSourceα α θ α= ⋅ > = ⋅ .

5 J. Bach, R. Vuine

Actor nodes are extensions to sensor nodes. Using their node function, they give their
input activation genin to an external variable SdataTarget DataTargets∈ . The
external value may be available to other node spaces, or, via the technical layer of the
agent, to the agent environment (e.g. the world server). In return, an input value is
read that typically represents failure (-1) or success (1) of the action returned as a
sensor value to genout .

Concept, register, sensor and actor nodes are the ‘bread and butter’ of node net
representations. To control node nets, a number of specific register nodes have been
introduced on top of that:

Activators are special registers that exist in correspondence to the gate types (por,
ret, sub, sur, cat, exp, sym and ref) of concept nodes of a node space. Their output is
read by the output activation function of the respective gate of their nodespace. By
setting activators to zero, no activation can spread through the corresponding gates.

General activation nodes are special nodes with a single slot and gate of type gen,
and when active, they increase the activation α of all nodes in the same node space.

General deactivation nodes are the counterpart of general activation nodes; they
dampen the activation of all nodes within the same node space. They are mainly used
to gradually reduce activity in a node space until only the most activated structures
remain, or to end activity altogether.

Associator nodes are used to establish links between nodes in a node space. This
happens by connecting all nodes with active gates, using a weight

1 21 12 2

1
associatori j i j

t t S
u uu u u uw w associationFactorα α α−= + ⋅ ⋅ ⋅

where t is the current time step, and []0,1
SassociationFactor ∈ � a node space

specific constant.

Disassociator nodes are the counterpart of associator nodes; they decrease or remove
links between currently active nodes in the same node space.

Additionally, there is functionality for adding and removing nodes, also encapsulated
in node entities.

3. Native Modules for MicroPsi Agents

It is possible to write and execute complete programs with AEP node nets. In theory,
they are sufficient to set up all behavior and control scripts of MicroPsi agents.
However, the execution of scripts made up of nodes is slow, and they are hard to
maintain, even using a graphical editor. This makes it desirable to add more nodes for
specific tasks, and to encapsulate long scripts. This is where native modules come into
play; they are entities with arbitrary numbers of slots and gates. In their node function

nodef , they hide program code written in a native computer language.
In the current implementation, native modules contain Java code and can perform any
kind of manipulation on the node net. By integrating Java IDE, graphical node net

The AEP-Toolkit for Agent Design and Simulation 6

editor and agent runtime environment, the extension of the agents becomes quite
comfortable. For the basic functions of MicroPsi agents, a number of native modules
have been added, of which three will be explained here:

3.1. Script Execution

Node scripts consist of chains of concept nodes that are connected by por/ret links.
With sub/sur links, macros and hierarchies are defined. This may be read as: after
‘step 1’ follows ‘step 2’ (por), and ‘step 1’ consists of ‘part 1’, ‘part 2’, ‘part 3’ and so
on. ‘Part 1’ can again be the beginning of a chain or network of por-linked nodes.

The linking of the ‘parts’ determines whether they are alternatives or conjunctions.
The lowest level of these hierarchies is always formed by sensor and actor nodes.
Because of these structures, it is possible to execute hierarchical plans with thousand
of basic actions at the lowest level and few abstract elements on the highest levels and
thus reduce the computational complexity of plan construction. Such hierarchical
scripts can be run using the native module “ScriptExecution”. ScriptExecution has
two slots – Abort and ScriptActivation – and seven gates: Current, ProgramRegister,
Macro, Idle, Success, Failure and FailAbort.

Initially, the script is retrieved and linked to a register on its highest level of
hierarchy. This register is connected to the ScriptExection module. The execution
starts by connecting Idle (which is active by default and thus susceptible to the
associator) to the first concept node of the script. ScriptExecution first deactivates
and unlinks Idle, and the first element is linked to Current.

Fig 2: Script execution.

Now, in every step, the connected concept node is activated with the value of
ScriptActivation. If this node is the parent of a macro, that is, if it has sub links, then
the sub-linked concept node with the highest activation is chosen as new current node.
(Using this pre-activation mechanism, scripts can be configured to follow certain
paths before execution or even during execution.) If one of the sub-linked macros was

current por-link sub-link macro actor

7 J. Bach, R. Vuine

successfully executed or there are no macros at all, the por-linked node with the
highest activation becomes the new current node – if none of the por-linked nodes is
active, ScriptExecution waits until one of the following happens:

– a por-linked node becomes active, causing it to become the new current node,
– a por-linked node becomes active with negative activation, causing failure,
– a timeout occurs, also causing the macro to fail.
When a macro just failed or was executed successfully, the entry point to this

macro will again become the current node; ScriptExecution then decides how to go on
in the manner given above. Macro success and failure are signaled at the Success and
Failure gates. Fig. 2 shows a very simple script with just two levels of hierarchy.1

3.2. Emotional Regulation

This module calculates the emotional parameters from urges, relevant signals and
values from the previous step. The module maintains the following internal states:
competence, arousal, certainty, resolution level (resLevel) and selection threshold
(selThreshold). These values are directly visible at the module’s gates. Any subsystem
of the agent that is subject to emotional regulation is linked to these gates, receiving
the current emotional parameters via netf .

Fig 3: Emotional regulation and motivation (editor view).

1 It is also possible to perform script execution solely by means of a spreading activation
mechanism with appropriately adjusted link weights and thresholds. Here, individual nodes
propagate their activation into the sub-direction, until actor nodes or sensor nodes are
reached. In turn the sub-linked nodes propagate a small sur-activation to keep their parents
active. If a sensor or actor succeeds, its activation is sur-propagated and excites their parents
strong enough to allow for a overcoming the por-threshold. The por-gate in turn has to have
an inhibitory link to stop the activation of its originator.

The AEP-Toolkit for Agent Design and Simulation 8

Additional gates signal the ‘cognitive urges’: certaintyU and efficiencyU, which are
calculated every step simply as difference between a target value and the actual value.
At the slots, the module receives the values of the ‘physiological urges’ (extU1..3) and
the amount of change that is to be made to certainty and competence, if some event
occurs that influences the system’s emotional state (slots certaintyS and efficiencyS).
The way we use these values is very similar to Dörner’s ‘EmoRegul’ mechanism
[8,10].

At every time step t the module performs the following calculations:

()()1max min ,0 ,efficiencyS competence
t t tcompetence competence in l−= +

()()1max min ,0 ,certaintyS certainty
t t tcertainty certainty in l−= +

(competencel and certaintyl are constants to keep the values in range)

competence
t tefficiencyU target competence= −

certainty
t tcertaintyU target certainty= −

(certaintytarget and certaintytarget are target values representing the optimum levels of
competence and certainty for the agent.)

()max , , extU
t t t t tarousal certaintyU efficiencyU in competence= −

1t tresLevel arousal= −

1t t tselThreshold selThreshold arousal−=

3.3. Perception

Perceptions of MicroPsi agents are organized as trees, where the root represents a
situation, and the leaves are basic sensor nodes. A situation is typically represented by
a chain of por/ret links that are annotated by spatial-temporal attributes. These
attributes define how the focus of attention has to move from each element to sense
the next; thus, the memory representation of an object acts as an instruction for the
perception module on how to recognize this situation.

Situations may contain other situations or objects; these are connected with sub/sur
links (that is, they are ‘part of’ the parent situation). We refer to situations that consist
of other situations as ‘complex situations’, in contrast to ‘simple situations’ that con-
tain only single or chained sensor nodes sur/sub-linked with a single concept node.

The virtual environment of the agent contains objects representing plants and fruit.
Currently, the agent is equipped with a set of elementary sensors on the level of
objects (like sensors for bananas or hazel-trees). In Dörner’s original design,
elementary sensors are on the level of groups of pixels and colors; we have simplified
this, but there is no real difference in the concept. Using more basic sensors just adds
one or two levels of hierarchy in the tree of the object representation, but the
algorithm for perception remains the same. All the agent learns about a virtual

9 J. Bach, R. Vuine

banana, for instance, stems from the interaction with this class of objects, i.e. after
exploration, a banana is represented as a situation element that leads to a reduction in
the feeding urge when used with the eat-operator, might be rendered inedible when
subjected to the burn-operator, and which does not particularly respond to other
operations (such as shaking, sifting, drinking and so on). The drawback of the current
implementation that abstains from modeling visual properties is that it does not allow
the agent to generalize about colors etc., and perhaps the situation representation will
be extended for other simulation experiments.

3.3.1. Recognition of Simple Situations
Here, we look at the case of situations that have been seen before by the agent, so it

already possesses a schema of the situation and uses the module “SimpleHyPercept”
for recognition. (In the case of unknown situations, a different module,
“Accommodation”, is used to acquire a new schema.)

If the agent peeks into an external situation, elementary sensors may become active
if a matching object appears. If, for instance, the agent stands in front of a banana
object and happens to focus its sensors on it, the corresponding sensor node becomes
active and the perception algorithm carries this activation to the concept node that is
sur-connected with the sensor (i.e. the banana concept). If the object can only be
recognized by checking several sensors, the agent retrieves all object representations
containing the active sensor as part of a por/ret chain from memory. These chains
represent for which sensors the agent has to check in which spatial relationship to the
first one, to establish which of the object candidates can be assumed to lie in front of
the agent (see fig. 4).

After an individual object has been found, it is checked whether it represents a part
of a ‘bigger picture’, like a particular arrangement of bananas that has been seen in
the past. This again can be determined by looking at the sur links of the banana
concept node, which lead to known, potentially fitting situations containing bananas.
The perception module builds a list of those nodes; these are the hypotheses that have
to be checked.

Environment

Sensor Sensor Sensor

por

ret

Concept
por

ret

Concept Concept

sub sur sub sur sub sur

Concept

sub sur

(+2;+2) (-2;+2)

(2;2)

(0;0) (2;0)

Fig. 4: A triangular arrangement of ‘banana objects’ is represented as a situation.

Some of the situations in the list might be biased to be checked first, because they are
considered to be more likely true. This applies especially to situations that have been

The AEP-Toolkit for Agent Design and Simulation 10

recently sensed (i.e. the agent will keep his hypothesis about the environment stable,
if nothing happens to disprove it).

Given that list of hypotheses, the perception module now checks one after the
other. To check a hypothesis, the por/ret-path of the hypothesis’ elements is read from
memory. The sensors of the agent are then moved to the element at the beginning of
the por/ret chain, then along the por path to the next position, and so on until all
elements have been “looked at”. After checking each element, the sensor must verify
its existence in order not to disprove the hypothesis. If all elements of the situation
have been successfully checked, the hypothesis is considered to be consistent with the
reality of the agent environment.

If one of the elements does not become active, the current hypothesis is deleted
from the list, and the next one is checked. If a hypothesis is checked to the end of the
por/ret chain, it is considered to “be the case” and linked as the new current situation.

As most modules in MicroPsi agents, perception can undergo emotional
modulation. Especially the resolution level matters: if it is low, fewer elements of a
hypothesis need to be checked for the hypothesis to be considered true. As a result,
perception is faster but inaccurate when resolution is low, but slower and precise if
resolution is high.

3.3.2. Occlusion
This algorithm obviously has a problem with occlusion (which happens frequently

in the real world): If one of the elements of a situation is not visible due to occlusion,
or because it is outside the field of view, it won’t become active, the testing of the
por/ret chain does not succeed and the hypothesis, although possibly correct, will be
discarded. The most straightforward approach to deal with that problem would be to
allow a number of elements not to become active before discarding the hypothesis.
Additionally, it has to be maintained that the missing elements are indeed hidden by
another object at the same position, or are invisible because of blurriness, distance etc.
This comes at the cost of more erroneous recognition, but in the perception of
complex situations (where the occlusion problem becomes relevant) it will be a
necessity.

3.3.3. Recognition of Complex Situations
Just as simple objects consist of an arrangement of sensor patterns, complex

objects and situations may contain other objects. This can be represented by sub/sur
linking them. By choosing appropriate weights on these links, alternatives and
conjunctions may be expressed. The hierarchical definition of objects makes it
possible to represent a face, for instance, by two eye schemas, a nose schema and a
mouth schema in the correct spatial arrangement. The eye schemas may in turn
consist of lid schema, brow schema, iris schema etc.

When attempting to recognize a cartoon face (like a smiley), the agent may
correctly recognize the spatial arrangement of a face, but because the eyes might lack
detail, discount eyelids and so on as ‘occluded’ and still maintain the face hypothesis.
However, the more complex mechanism of conditional HyPercept has not been
implemented yet by our group.

11 J. Bach, R. Vuine

In a similar way to “ScriptExecution”, “EmotionalRegulation” and “SimpleHy-
Percept”, native modules for protocol generation, motivation, goal selection, event
evaluation, simple planning, focus control, and so on have been defined. This toolbox
already enables the agent to explore its environment, memorize its experiences,
attempt try-and-error strategies to satisfy its urges, learn from the results and to follow
little plans.

4. Summary and Outlook

A main focus of experiments with AEP based agents will be on multi agent
interaction in a complex simulated environment (although our group has also
implemented an AEP based control for four-legged Sony robots).

The current AEP architecture provides a simulation server that communicates with
an arbitrary number of agents, the simulation world and – via console applications –
with human experimenters. All components can be distributed over a network,
allowing for simulations with computationally expensive agents. Communication
between AEP components is facilitated via a general protocol that exchanges objects
through a communication layer and includes mechanisms for remote maintenance.

The speed of the simulation is controlled with a timer component. Although the
world simulation currently only takes place in two dimensions, which are represented
in a 2D viewer, a three dimensional interface improves the interaction of humans with
our virtual agents. The 3D viewer simply converts the 2D environment into a three
dimensional representation that is read and displayed by a graphics engine. However,
this engine provides only functionality for observing the agent world (i.e. interaction
is not yet possible).

Agent

Server

Visualizer
DisplayClient

World

WorldData

DisplayServer

AgentData

ConsoleApp

Timer

Agent Agent ConsoleApp

Fig. 5: MicroPsi agent and server.

MicroPsi is part of a larger effort of our group which is centered around the AEP
framework. Currently, the toolkit is being used to implement classification
algorithms, virtual Braitenberg vehicles [6], an artificial life simulation and to model
human emotional expression.

The AEP-Toolkit for Agent Design and Simulation 12

References

1. Bach, J. (2002). Enhancing Perception and Planning of Software Agents with
Emotion and Acquired Hierarchical Categories. In Proceedings of MASHO 02,
German Conference on Artificial Intelligence KI2002: 3-12

2. Bach, J. (2003). Emotionale Virtuelle Agenten auf der Basis der Dörnerschen Psi-
Theorie. In Burkhard, H.-D., Uthmann, T., Lindemann, G. (Eds.): ASIM 03,
Workshop Modellierung und Simulation menschlichen Verhaltens, Berlin,
Germany: 1-10

3. Bach, J. (2003). The MicroPsi Agent Architecture. Proceedings of ICCM-5,
International Conference on Cognitive Modeling, Bamberg, Germany: 15-20

4. Bach, J. (2003). Artificial Emotion Project/MicroPsi Home Page:
http://www.artificial-emotion.de

5. Bates, J., Loyall, A. B., & Reilly, W. S. (1991). Broad agents. AAAI spring
symposium on integrated intelligent architectures. Stanford, CA: Sigart Bulletin,
2(4), Aug. 1991: 38-40

6. Braitenberg, V. (1984) Vehicles. Experiments in Synthetic Psychology. MIT Press.

7. Dörner, D. (1999). Bauplan für eine Seele. Reinbeck: Rowohlt

8. Dörner, D. (2003). The Mathematics of Emotion. Proceedings of ICCM-5,
International Conference on Cognitive Modeling, Bamberg, Germany

9. Dörner, D., Bartl, C., Detje, F., Gerdes, J., Halcour, D., Schaub, H., & Starker, U.
(2002). Die Mechanik des Seelenwagens. Eine neuronale Theorie der
Handlungsregulation. Verlag Hans Huber, Bern

10.Dörner, D., Hamm, A., Hille, K. (1996): EmoRegul – die Beschreibung eines
Programms zur Simulation der Interaktion von Motivation, Emotion und
Kognition bei der Handlungsregulation, Memorandum des Lehrstuhls
Theoretische Psychologie, Universität Bamberg

11.Klix, F. (1984). Über Wissensrepräsentation im Gedächtnis. In F. Klix (Ed.):
Gedächtnis, Wissen, Wissensnutzung. Berlin: Deutscher Verlag der
Wissenschaften.

12.Lenz, M., & Burkhard, H.-D. (1998). Case retrieval nets: Basic ideas and
extensions. Technical report, Humboldt University, Berlin

13.Shachter, R. D. (1986). Evaluating influence diagrams. Operations Research, 34:
871-882

14.Vuine, R., & Bach, J. (2003). The AEP Handbook. http://www.artificial-
emotion.de/pub/aephandbook.pdf (April 2003)

	2.1. Representation with Nodes

