
Representations for a Complex World:
Combining Distributed and Localist Representations for

Learning and Planning

Joscha Bach

University of Osnabrück
Department of Cognitive Science

jbach@uos.de

Abstract. To have agents autonomously model a complex environment, it is
desirable to use distributed representations that lend themselves to neural
learning. Yet developing and executing plans acting on the environment calls
for abstract, localist representations of events, objects and categories. To
combine these requirements, a formalism that can express neural networks,
action sequences and symbolic abstractions with the same means may be
considered advantageous. We are currently exploring the use of compositional
hierarchies that we treat both as Knowledge Based Artificial Neural Networks
and as localist representations for plans and control structures. These
hierarchies are implemented using MicroPsi node nets and used in the control
of agents situated in a complex simulated environment.

1. Introduction

Plan based control of agents typically requires the localist representation of objects
and events within the agent’s world model: to formulate a plan, individual steps have
to be identified, arranged into sequences and evaluated. The ordering of the plan
components asks for some kind of pointer structure that is usually expressed as a
symbolic formalism. On the other hand, to have an agent act in a complex dynamic
environment with properties and structure unknown to the agent, it is often desirable
to use sub-symbolic representations of the environment that lend themselves to
autonomous reinforcement learning. These demands result in hybrid architectures [11,
5], which combine symbolic and sub-symbolic layers of description. Usually, these
layers are implemented with different techniques, for instance by defining a number
of learnable low-level behaviors implemented in neural networks, which are switched
and parameterized by a symbolic, non-neural layer.

In our approach, we make use of a different setting: we are using a kind of
executable semantic network, called MicroPsi node nets [2] that can act both as feed-
forward networks suitable for back-propagation learning and as symbolic plan
representations. Even the control structures of our agents are implemented within the
same networks as are their plans and their representations of the environment. This
has a number of advantages: it is not necessary, for example, to draw a sharp

boundary between categorical abstractions and sensory-motor behavior. Rather, we
express rules and abstractions as instances of localist neural network structures that
may even be used to facilitate neural learning. We may thus mix distributed
representations at all descriptional levels with rules, and we can also use rules at the
lowest sensory-motor levels, if this is appropriate for a given task.

2. MicroPsi Agents

We are currently developing a cognitive architecture that is called MicroPsi [1] and
focuses on the autonomous acquisition of grounded representations by agents, based
on motivation. MicroPsi is partially derived from ideas of the “Psi”-theory of
psychologist Dietrich Dörner [6, 7, 8]. Here, agents do not possess predefined
knowledge of the world, but a set of predefined modes of access to it (i.e. sensors and
actuators and some low-level processing for sensor data). Additionally, MicroPsi
agents have a fixed set of motivational parameters (urges), which measure demands
(like food or uncertainty reduction). In the pursuit of the demands, the agents’ action
control establishes consumptive goals (which consist in fulfilling of these demands)
and directs the agents’ behavior.

Fig. 1. Agent architecture as suggested by Dörner 2002 [8]

While some of the urges allude to physical needs (like food, water and integrity),
there are also urges that are directed on cognitive aspects (like competence, i.e. the
effectiveness in attaining goals, and uncertainty reduction, which measures the degree

of exploration of accessible environmental features). Dörner also suggests a social
urge, called affiliation, which is directed at receiving positive socially interpreted
signals from other agents. Each urge may give rise to a respective active motive,
where the motive strength depends on the deviation of the demand from its target
value, and the chance of selecting it is proportional to both the estimate of reaching a
related goal and the intensity of the urge. Initially, the agents do not know which
operations on the environment are effective in addressing the demands, so they have
to resort to a try-and-error strategy. If actions have an effect (positive or negative) on
the demands, a connection between the action, the surrounding perceived situation
and the demand is established. If the respective urge signal gives rise to the related
motive later on, it will pre-activate the associated situation and action context in the
agent’s memory. Thus, the urges may govern the behavior of the agent, based on its
previous experiences.

Fig 2. Influences of modulators in the Dörner model

Perception, action control, memory retrieval and planning may furthermore be
modified by a set of modulating parameters: the selection threshold determines
motive stability, the resolution level controls the accuracy and speed of perception
and planning by affecting the number of features that are tested, the activation
controls the action readiness and is basically inverse to the resolution level, and the
securing level affects the ratio of orientation behavior. Together with the current urge
changes (which are interpreted as pleasure or displeasure signals) and the competence
and uncertainty levels, the state of the modulators might be interpreted as an
emotional configuration of the agent.

2.1 MicroPsi Node Nets: Executable Spreading Activation Networks

Internally, MicroPsi agents are made up of a spreading activation node net. This
section gives a (somewhat simplified) description:

 net, , , , , fNN U V DataSources DataTargets Act= (1)

 (2) (){ }node node, , , , f , f :U id type I O NN N= → N

n (3) (){ }
1

, , u
nj

k

vi
n

I slotType in in outω
=

= =∑
 (){ }outact,, , , , , , f fO gateType out min,max ampα θ= (4)

 (5) ,
act ,f :u o

u iin θ× → α

t

 (6) outf : Act amp min max outα× × × × →

 (7) (){ } ()1 2 4, , , , ; , , ,u u
i jV o i st st st x y zω= ∈ =

Its building blocks, the net-entities U, are connected via weighted, directional links V.
Net entities possess slots I (this is where links sum up their transmitted activation) and
gates O, which take activation values from the slots and calculate output activations
with respect to gate specific activators Act. Activators allow controlling the
directional spread of activation throughout: there is an activator gateTypeact for
each gate type, and since the node output function (6) is usually computed as

Act∈

()()min max , ,
ogateType , only gates with non-zero activators

may propagate activation. Vectors of DataSources and DataTargets connect the net to
its environment. The net entities come in several flavors:

out act amp min maxα= ⋅

• Register nodes have a single gate of type “gen” and a single slot, also of type
“gen”; they are often used as simple threshold elements.

• Sensor nodes and actuator nodes provide the connection to the environment. Their
activation values are received from and sent to the agent world (which can be a
simulation or a robotic environment). Sensor nodes do not need slots and have a
single gate of type “gen”, which takes its value from a DataSource. Actuator nodes
transmit the input activation they receive through their single slot (also type “gen”)
to a DataTarget. At the same time, they act as sensors and receive a value from a
DataSource that usually corresponds with the actuator’s DataTarget: The technical
layer of the agent framework sends the respective DataTarget value to the agent’s
world-server which maps it to an operation on the world and sends back a success
or failure message, which in turn is mapped onto the actuator’s DataSource.

• Concept nodes are like register nodes; they have a single incoming slot, but in
addition several kinds of outgoing links (i.e. types of gates). Each kind of links can
be turned on or off to allow for directional spreading activation throughout the
network, using the corresponding activator. Concept nodes allow the construction
of partonomic hierarchies: the vertical direction is made of by the link type “sub”,
which encodes a part-whole relationship of two nodes, and the link type “sur”,
which encodes the reciprocal relationship. Horizontally, concept nodes may be
connected with “por” links, which may encode a cause-effect relationship, or
simply an ordering of nodes. The opposite of “por” links are “ret” links.

Additionally, there are link types for encoding categories (“cat” and “exp”) and
labeling (“sym” and “ref”). (Note that link type translates into a link originating
from a gate of the respective type.)

• Activator and associator nodes are special entities that can be used to manage link
weights, control directional spreading of activation and the values of activation of
individual or groups of nodes in the network.
It is possible to write arbitrary control structures for agents using these node types.

Fig. 3. MicroPsi node net editor

We have implemented a graphical editor/simulator to do this. However, we found that
the manual design and debugging of large control programs using individual linked
nodes is practically not feasible (trying to do this literally gives the notion of spaghetti
code a new meaning). If a structure within the agent is not meant to be accessed as a
collection of nodes, it is more straightforward to implement it using a programming
language such as Java. This purpose is served by

• Native modules – this are net entities encapsulating arbitrary functions fnode acting
on the net, implemented in a native programming language, and executed
whenever the module receives activation.

• Node spaces are net entities that encapsulate a collection of nodes:
 (8) { }net, ,S SS U DataSources DataTargets= , fS S

Activator and associator nodes act only within the level of their node spaces.
Because node spaces can contain other node spaces, agents may be split into
modules, which make their innards a lot more accessible to human readers.

A slightly more detailed description of MicroPsi node nets is given in [2].

2.2 Situatedness of the Agents

Most of our experiments take place in a simulated environment that provides
necessary resources and some hazards to the agents. Objects within the environment
appear as co-located collections of features to the agents, where features correspond
to sensory modalities of the agents. The simulation world is a plane consisting of
different terrain types (the terrain has an effect on locomotion and may also provide a
hazard, i.e. certain areas may cause damage to the agent). Different modes of
locomotion are available to the agents, such as simple grid-based movement or a
simulation of a pair of stepper motor driven wheels.

Fig. 4. World editor/simulator

In the past, we have presented agents with identifiers for each object, along with a
spatial position relative to the agent. Currently, we start using abstract basic
modalities, such as Gestalt identifiers, spatial extensions, relative positions, color
values and weights, which might be replaced by a more low-level interface (like
bitmaps and surface textures) in the future. Besides sensing, agents may probe their
environment by acting upon it and examining the outcome. Actually, sensing may be
seen as a form of action, and consequently, the definition of the sensory appearance of
an object may amount to a script that encodes a sequence of actions necessary to
recognize it.

Based on the affordances of the agents [9, 10], which are constrained by the
sensory modalities and the needs of the agents, internal representations are derived
from interactions with the environment.

Internally, world objects may be composed of sub-objects in spatial arrangements;
the world maintains interactions between these objects by performing a discrete
simulation, typically asynchronous to the agents. Agents, environment and
computationally expensive world components (such as a simulation of plant growth)
may run in a distributed network.

Using a constructed virtual environment for learning and classification experiments
is not without difficulty: in many cases, agents may do nothing but rediscover a
portion of the ordering that has been carefully engineered into their environment
before, which limits the complexity of what is learned to what has been pre-
programmed elsewhere. Additionally, the bias introduced by the artificial world may
make it difficult to perform meaningful evaluations of the learning and classification
results. On the other hand, because of shortcomings in perceptual and motor abilities,
robots tend to be confined to a highly restricted and artificial environment as well. To
put it a little provocatively: contemporary robots are often almost deaf, functionally
blind, have restricted locomotion and only the simplest of push/grasp interactions
available. It seems that many robotic testbeds (such as robotic soccer) can be quite
satisfactorily simulated, and even significantly enhanced by incorporating additional
modes of interaction and perception.

The simulation world is part of an integral experimental framework, along with the
network simulator and a number of tools that aid in performing experiments. [3, 4].
(We are also using the toolkit for other agent designs, for instance in Artificial Life
experiments, and to control Khepera robots.)

3. Representation Using Compositional Hierarchies

3.1 Partonomies

In MicroPsi agents, there is no strict distinction between symbolic and sub-symbolic
representations. The difference is a gradual one, whereby representations may be
more localist or more distributed. For many higher-level cognitive tasks, such as
planning and language, strictly localist structures are deemed essential; in these
procedures, individual objects of reference have to be explicitly addressed to bring
them into a particular arrangement. However, a node representing an individual
concept (such as an object, a situation or an event) refers to sub-concepts (using the
“sub”-linkage) that define it. These sub-concepts in turn are made up of more basic
sub-concepts and so on, until the lowest level is given by sensor nodes and actuator
nodes. Thus, every concept acts as a reference point to a structured interaction
context; symbols are grounded in the agent’s interface to its outer and inner
environment.

There are several requirements to such a representation:
• Hierarchies: abstract concepts are made up of more basic concepts. These are

referenced using “sub”-links (i.e. these sub-concepts are “part-of” a concept).
Because these sub-concepts are in turn made up of sub-concepts as well, the result
is a compositional hierarchy (in this case, a partonomy). For example, a hierarchy
representing a face can be made out of a concept of a face, “sub”-linked to
concepts for the eyes, the nose, the mouth etc. The concept for the eye points to
concepts for eyelids, iris etc. until the lowest level is made up of primitive image
sensors like local contrasts and directions. Note that this representation is devoid of
categories, we are only representing individual instances of objects. However, if
similar instances are encountered later on, the representation may act as a classifier
for that object structure.

Fig. 5. Hierarchy of nodes, only “sub”-links are shown, reciprocal “sur”-links omitted

• Sequences: to encode protocols of events or action sequences, sequences of
concepts need to be expressed. This is done by linking nodes using “por”-
connections. “por” acts as an ordering relation and is interpreted as a subjunction in
many contexts. The first element of such a “por”-linked chain is called the head of
a chain and marks the beginning of execution on that level. In our face-example,
the “sub”-linked parts of the face concept could be connected using spatially
annotated “por”-links that define a plan to first recognize the left eye, then the right
eye, then the nose, then the mouth. These sequences may occur on all levels of the
hierarchy. The mouth-concept for instance might be made up of a sequence
looking for the upper lip and the lower lip etc.

Fig. 6. Sequences in a hierarchy, reciprocal “sur” links and “ret” links omitted

• Disjunctions: Since there might be more than one way to reach a goal or to
recognize an object, it should be possible to express alternatives. Currently this is
done by using “sub”-linked concepts that are not “por”-linked, that is, if two
concepts share a common “sur/sub” linked parent concept without being members
of a “por”-chain, they are considered to be alternatives. This allows to link
alternative sub-plans into a plan, or to specify alternative sensory descriptions of an
object concept.

Fig. 7. Expressing conjunctions, reciprocal link directions (“ret” and “sur”) have been omitted

• Conjunctions: in most cases, conjunctions can be expressed using sequences
(“por”-linked chains), or alternatives of the same concepts in different sequence
(multiple alternative “por”-linked chains that permute over the possible sequential
orderings). However, such an approach fails if two sub-concepts need to be
activated in parallel, because the parts of the conjunction might not be activated at
the same time. Currently we cope with this in several ways: by using weights and
threshold values to express conjunctions (fig. 7a), with branching chains (fig. 7b)
or with reciprocal “por”-connections (fig. 7c). In the first case, we encode the
relationship to the parent by setting the weights ω1..n,i of the “sur/sub”-links from
the alternatives u1..n to the parent ui and a threshold value θi of ui such that ∑ω1..n,i

> θi and ∑ω1..n,i − ωj,i < θi for all individual weights ωj,i of an alternative uj ∈
{u1..n}. In the second case, we are using two “por”-links (i.e. two “por”-linked
chains) converging onto the same successor node, and in the third, we are defining
that fully “por”-connected topologies of nodes are given a special treatment by
interpreting them as conjunctive.

• Temporary binding: because a concept may contain more than one of a certain
kind of sub-concept, it has to be made sure that these instances can be
distinguished. Linking a concept several times allows having macros in scripts and
multiple instances of the same feature in a sensor schema. In some cases,
distinguishing between instances may be done by ensuring that the respective
portions of the net are looked at in a sequential manner, and activation has faded
from the portion before it is re-used in a different context (for instance, at a
different spatial location in a scene). If this can not be guaranteed, we may create
actual instances of sub-concepts before referencing them. This can be signaled by
combining partonomies with an additional link-type: “cat/ref”, which is explained
below. Note that sensors and actuators are never instantiated, i.e. if two portions of
the hierarchy are competing for the same sensor, they will either have to go
through a sequence of actions that gives them exclusive access, or they will have to
put up with the same sensory value.

3.2 Taxonomic Relationships

If two different “por”-linked chains share neighboring nodes, and the relationship
between these node is meant to be different in each chain (for instance, there is a
different weight on the “por” and “ret” links, or the direction of the linkage differs, if
they have different orderings in the respective chains), the specific relationship can
not be inferred, because “por”-links are not relative to the context given by the parent.
This can be overcome by making the chain structure itself specific to the parent, and
linking the nodes to the chain structure via “cat/exp”-links (fig. 8).

Fig. 8. a) Sharing of differently related features may lead to conflicts. b) Separating features
and relationship with respect to parent

Thus, the structural intermediate node may hold activation values of the “exp”-linked
actual concept, which itself may be used in other contexts as well. Of course, an
intermediate node may have more than one “exp”-link. In this case, the linked
concepts become interchangeable (element abstraction). The intermediate node may
be interpreted as a category of the “exp”-linked concepts. Using “cat” and “exp”

links, it is possible to build taxonomic hierarchies. In conjunction with “sub” and
“sur”, MicroPsi node nets may be used to express hybrid or parse structures [12].

Within MicroPsi agents, “cat/exp” links are also used to reference different
instances of the same concept, for instance in plans and in the local perceptual space.
Here, “cat” links may act as pointers to the actual concepts in long term memory.
“cat” may usually be interpreted as an “is-a” relationship.

3.3 Execution

Behavior programs of MicroPsi agents could all be implemented as chains of nodes.
The most simple and straightforward way probably consists in using linked concept
nodes or register nodes that are activated using a spreading activation mechanism.
Conditional execution can be implemented using sensor nodes that activate or inhibit
other nodes. Portions of the script may affect other portions of the script by sending
activation to associator nodes or activator nodes. However, for complex scripts,
backtracking and re-using portions of the script as macros become desirable.

For our purposes, a hierarchical script consists of a graph of options O, actions A
and conditions C. Options might follow each other or might contain other options, so
they can be in the relationships succ(o1, o2), pred(o1, o2) iff succ(o2, o1),
contains(o1, o2) and part-of(o1, o2) iff contains(o2, o1). They might also be
conjunctive: and(o1, o2) iff and(o2, o1), or disjunctive: or(o1, o2) iff or(o2, o1). The
following restriction applies: and(o1, o2) ∨ or(o1, o2) ∨ succ(o1, o2) → ∃o3: part-
of(o1, o3) ∧ part-of(o2, o3).

Options always have one of the states inactive, intended, active, accomplished or
failed. To conditions, they may stand in the relationship is-activated-by(c, o), and to
actions in is-activated-by(o, a) and is-activated-by(a, o). Options become intended
if they are part of an active option and were inactive. They become active, if they are
intended and have no predecessors that are not accomplished. From the state active
they may switch to accomplished if all conditions they are activated by become true
and for options that are part of them holds either, that if they are member of a
conjunction, all their conjunction partners are accomplished, or that at least one of
them is not part of a conjunction and is accomplished and has no predecessors that are
not accomplished. Conversely, they become failed if they are active, one of the
conditions they are activated by becomes failed or if all options that are part of them
and are neither in conjunctions nor successor or predecessor relationships turn failed,
or if they contain no options that are not in conjunctions or successions and one of the
contained options becomes failed. And finally, if an option is part of another option
that turns from active into any other state, and it is not part of another active option, it
becomes inactive.

The mapping of a hierarchical script as defined above onto a MicroPsi node net is
straightforward: options may be represented by concept nodes, the part-of relationship
using “sub” links, the successor relationship with “por” links etc. (In order to use
macros, “exp”-links have to be employed as discussed in section 3.2.)

Conditions can be expressed with sensor nodes, and actions with actuator nodes,
whereby the activation relationship is expressed using “gen” links. Disjunctions

simply consist in nodes that share the same “sur” relationship, but are not connected
to each other. This way, there is no difference between sensory schemas that are used
to describe the appearance of an object, and behavior programs: a sensory schema is
simply a plan that can be executed in order to try to recognize an object.

Even though the notation of a script is simple, to execute hierarchical scripts, some
additional measures need to be taken. One way consists in employing a specific script
execution mechanism that controls the spread of activation through the script. We
have implemented this as a script execution module that will “climb” through a
hierarchical script when linked to it (fig. 9).

Fig. 9. Using a native module for script execution

Here, the currently active option is marked with a link and receives activation through
it. “sub”-linked options get their intended status by a small amount spreading
activation. By preventing this pre-activation from spreading (for instance by using
inhibitory connections from outside the script), it is possible to block portions of the
script from execution.

Actions are handled by sending activation into an actuator node and waiting for a
specified amount of time for its response. If the actuator node does not respond with a
success signal, the script will fail at the respective level and backtrack; backtracking
positions are held in a stack that is stored within the script execution module.

The drawbacks of this approach are obvious:
- There is no parallel processing. Only one option is being activated at a time. In

the case of conjunctive nodes, the activation focus is given to the one with the
highest pre-activation first. If all conjunctive options have the same activation,
one is randomly chosen.

- The activation of the individual nodes poorly reflects the execution state,
which is detrimental to some learning methods (like decaying of rarely used
links).

- The approach does not seamlessly integrate with distributed representations,
i.e. it is for example not advisable to perform back-propagation learning on the

node hierarchy. (It is still possible to add lower, distributed layers that will be
interpreted just like sensor and actuator nodes, though.)

On the other hand, it is also possible to devise a specific node type that spreads
activation in the following manner: each node has two activation values, the request
activation ra , determining whether a node attempts to get confirmed by “asking” its
sub-nodes, and a confirm activation c that states whether a node confirms to its
parent concepts, where for each node: r (or to signal failure).
When a node gets first activated, it switches its state from inactive to requested. It
then checks for “por”-linking neighbors (i.e. the corresponding slot): if it has no
unconfirmed predecessors (i.e. nodes that possess a “por”-link ending at the current
node), it becomes requesting and starts propagating its request activation to its “sub”-
linked sub-concepts. In the next step, it switches to the state wait for confirmation,
which is kept until its “sub”-linked children signal either confirmation or failure, or
until their “sub”-linking parent stops sending a request signal. After confirmation, the
node checks if it has “por”-linked unconfirmed successors. If this is not the case,

c gets propagated to the “sub”-linking parent node, otherwise ca is propagated to the
successor node only. The node then remains in the state confirmed until its parent
node stops requesting, then goes back to inactive. (Failures are propagated
immediately.)

a
0 ca a≤ ≤ 0ca <

a

With this mechanism, we can describe conjunctions and disjunctions using
weighted links. Since the execution of a script is now tantamount to pre-activating a
hypothesis (the portion of the script we want to try) and its failure or success
translates into a match with a sensor configuration, we may use the data structure for
back-propagation and other neural learning methods. The distributed nature of
execution makes supervision of the execution more difficult, but enables parallel
distributed processing. (It should be mentioned that we can not use simple chains of
“por”-linked nodes with this approach, without also “sub”-linking each of them to the
same parent node. This is less of an issue for the script execution module, because it
can determine the parent of each element of a sequence by parsing backwards along
the “ret” links to the first element. But because this might take additional time in the
case of backtracking, it seems always a good idea to declare the part-of relationship of
each sequence element explicitly.)

4. Perception

The perceptual mechanism of the agents follows a bottom-up/top-down approach. If a
sensor is triggered by some prominent environmental feature, activation spreads
upward (“sur”) and activates all concepts this sensor is part of. These concepts are
then marked as perceptual hypothesis by linking them to an activation source. From
now on, script execution is performed as described above: On each level of each of
these concepts, activation is spreading down again to test the other parts deemed
necessary to identify them. If the sensors connected to these other parts report success
(i.e. find a corresponding feature in the environment), then the concept itself becomes
confirmed, otherwise it will be marked as “failed”. Thus, activation spreads upward,

“suggesting” theories of what is there to be perceived in the environment, then down,
“testing” those theories, then up again, confirming or disconfirming them. The
remaining confirmed concepts are considered the immediate percepts of the agent and
are made available in a distinct node-space for further processing. (In Dörner’s work,
this mechanism is called “hypothesis based perception”.)

4.1 Building Structured Representations of the Environment

Before partonomies can be employed to recognize objects, the agent has to construct
them. There are several ways to do this. The first step, called accommodation, has
been suggested by Dörner [6] and consists in using basic perceptual levels to arrive at
a simple division of compositional layers: for instance by putting direction sensitive
detectors for line elements at the lowest level. These make up contour segments,
which are in turn parts of gestalts, and these may be combined into object schemas,
which finally make up more complex objects and situations. However, the main
problem turns out not to be the initial construction of such a simple partonomy, but its
extension and modification, whenever new examples are encountered by the agent. In
realistic environments, perception tends to be partial and somewhat uncertain, and
different instances of a perceptual class may have somewhat different appearances.
We combine two different approaches:

Whenever we come about a partonomic graph describing a percept that has not
been encountered before in exactly the same way, we perform a graph matching
procedure with existing object representations to obtain a similarity measure. For this,
we are using the MatchBox algorithm [13] that estimates the best match according to
node topology and link weights with a Hopfield network.

If we encounter a prototype with sufficient similarity, the new percept is merged
with it by adding new nodes where necessary, and by adjusting link weights. If the
percept does not exhibit much similarity to anything encountered before, a new
prototype is created. (However, if the new object lends itself to similar interactions as
another already known object, the perceptual descriptions might be merged as
disjunctions in the future.)

The other method makes use of Knowledge Based Artificial Neural Networks
(KBANN) [14, 15]. It works by using a partial, possibly incorrect domain theory that
is given to the agent in the form of propositional logical clauses. These are converted
into a hierarchical graph, where the lower level (sensor nodes and actuator nodes) are
the precedents which are “sur”-linked to their antecedents. Conjunctions, disjunctions
and negations are expressed by using weighted links and threshold values.

When activation is given to the sensor nodes according to the logical values of the
antecedents, it spreads along the links and activates the compositional nodes higher up
in the hierarchy in such a way as to evaluate the clauses.

The graph is then extended by a few randomly inserted nodes and additional sensor
nodes to lend it more flexibility. These new nodes are given link weights close to
zero, so they do not affect the outcome of the spreading activation. Furthermore, weak
links are added across the hierarchy. The network is then used to classify examples
encountered by the agent and is adapted using standard back-propagation. The

additional nodes allow the insertion of additional abstract features, and the additional
links make generalization and specialization possible.

4.3 Learning Action Sequences and Planning

The planning capabilities of our agents are still very basic. To achieve at a repertoire
of action sequences, they maintain a protocol memory made up of “por”-linked
situations in the environment, whereby a situation consists of a spatial arrangement of
recognized objects, along with actions performed on them. Whenever a situation is
correlated with a positive or negative effect upon the urges of the agent (for example,
the agent has reduced its need for water by collecting some), the links to the
preceding situations are strengthened according to the impact of this event. Because in
protocol memory, links below a certain strength decay over time, event chains leading
to situations of importance to the agent (where it satisfied a need or suffered damage)
tend to persist.

When the agent establishes a goal from an urgent need, it first looks for a direct
chain leading from the current situation to the goal situation. If it can not find such an
automatism, it attempts to construct such a chain by combining situations and actions
from previous experiences, using a limited breadth-first search. If it does not succeed
in constructing a plan, it resorts to either a different goal or to try-and-error behavior
to create more knowledge.

5. Outlook

In MicroPsi agents, we combine neural network methods with compositional
hierarchies that lead to localist, abstract representations of the environment suitable
for planning. However, much work remains to be done. Currently, we are concerned
especially with the representation of space and time and the implementation of an
inheritance mechanism that allows distributing information along taxonomical
hierarchies, as these seem to be a prerequisite for more generalized approaches to
perception and memory.

While we are busy extending the simulation environment with more operators,
more complex objects and relationships between them, we are planning to use the
architecture more extensively with real-world sensor data and for the control of robots
in the near future.

Acknowledgements

This work is the result of the efforts of many people, especially Ronnie Vuine, who
supervised the implementation of large parts of the technical framework, the planning
and the perception mechanism, Colin Bauer, who has implemented support for
KBANNs and has designed the graph matching algorithm. Matthias Füssel has
implemented the better part of the simulation environment, and David Salz is the
creator of a 3D display component for the agent world.

References

1. Bach, J. (2003). The MicroPsi Agent Architecture Proceedings of ICCM-5, International
Conference on Cognitive Modeling, Bamberg, Germany (pp. 15-20)

2. Bach, J., Vuine, R. (2003). Designing Agents with MicroPsi Node Nets. Proceedings of KI
2003, Annual German Conference on AI. LNAI 2821, Springer, Berlin, Heidelberg. (pp.
164-178)

3. Bach, J. (2003). Connecting MicroPsi Agents to Virtual and Physical Environments.
Workshops and Tutorials, 7th European Conference on Artificial Life, Dortmund, Germany.
(pp. 128-132)

4. Bach, J., Vuine, R. (2003). The AEP Toolkit for Agent Design and Simulation. M. Schillo et
al. (eds.): MATES 2003, LNAI 2831, Springer Berlin, Heidelberg. (pp. 38-49)

5. Burkhard, H.-D., Bach, J., Berger, R., Gollin, M. (2001). Mental Models for Robot Control,
Proceedings of Dagstuhl Workshop on Plan Based Robotics 2001

6. Dörner, D. (1999). Bauplan für eine Seele. Reinbeck
7. Dörner, D. (2003). The Mathematics of Emotion. International Conference on Cognitive

Modeling, Bamberg
8. Dörner, D., Bartl, C., Detje, F., Gerdes, J., Halcour, (2002). Die Mechanik des

Seelenwagens. Handlungsregulation. Verlag Hans Huber, Bern
9. Gibson, J. J. (1977). The theory of affordances. In R. E. Shaw & J. Bransford (Eds.),

Perceiving, Acting, and Knowing. Hillsdale, NJ: Lawrence Erlbaum Associates
10. Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton

Mifflin
11. Maes, P. (1990), Situated Agents Can Have Goals, Robotics and Autonomous Systems, 6

(p. 49-70)
12. Pfleger, K. (2002). On-line learning of predictive compositional hierarchies. PhD thesis,

Stanford University
13. Schädler, K., Wysotzki, F. (1998). Application of a Neural Net in Classification and

Knowledge Discovery. In: Michael Verleysen (ed.): Proc. ESANN'98, D-Facto, Brussels
14. Towell, G. Shavlik, J. (1992). Using symbolic learning to improve knowledge-based neural

networks. In Proceedings of the Tenth National Conference on Artificial Intelligence, 177-
182, San Jose, CA. AAAI/MIT Press

15. Towell, G. Shavlik, J. 1994. Knowledge-based artificial neural networks. Artificial
Intelligence, 70 (p. 119-165)

